
Dynamic White-Box Software Testing using a

Recursive Hybrid Evolutionary Strategy/Genetic

Algorithm
Ashwin Panchapakesan∗, Graduate Student Member, Rami Abielmona†, Senior Member, IEEE, and

Emil Petriu‡, Fellow, IEEE
∗School of EECS, University of Ottawa, Ottawa, Canada

†Research & Engineering, Larus Technologies Corporation, Ottawa, Canada
‡School of EECS, University of Ottawa, Ottawa, Canada

∗apanc006@uottawa.ca, †rami.abielmona@larus.com, ‡petriu@eecs.uottawa.ca

Abstract—Software testing is an important and time consuming
part of the software development cycle. While automated testing
frameworks do help in reducing the amount of programmer time
that testing requires, the onus is still upon the programmer
to provide such a framework with the inputs on which the
software must be tested. This requires static analysis of the source
code, which is more effective when performed as a peer review
exercise and is highly dependent on the skills of the programmers
performing the analysis. Thus, it demands the allocation of
precious time of highly skilled programmers. An algorithm that
automatically generates inputs to satisfy test coverage criteria
for the software being tested would therefore be valuable, as it
would imply that the programmer no longer needs to analyze
code to generate the relevant test cases. This paper explores a
hybrid evolutionary strategy with an evolutionary algorithm to
discover such test case synthesis, in an improvement over previous
methods which overly focus their search without maintaining the
diversity required to cover the entire search space efficiently.

Keywords—Software testing, black-box testing, white-box testing,
static white-box testing, dynamic white-box testing, evolutionary
algorithm, genetic algorithm, evolutionary strategy, control flow
graph

I. INTRODUCTION

A. The Need for Software Testing

AS part of the development process, software needs to
be tested before it is deployed. This is becoming more

and more relevant in today’s world, given how many critical
systems are controlled by software. A bug in mission critical
software could have severe consequences, including the loss
of human life. As a result, it is imperative that software
be thoroughly tested before it is deployed. As such, the
testing process consumes approximately 50% of the software
development timeline [1]. Considering how expensive it is to
develop software, it is clear that reducing the amount of time
spent on testing the SUT (Software Under Test) would lead to
an optimization of the time spent in the development process
and therefore an optimization in the cost of producing software.
This reduction in time may be achieved by automating the
process of testing.

Testing the SUT requires that the agent performing the tests
(whether that agent is human or a computer program) provides
the software with some inputs and compares the observed
behavior against the expected behavior. If the SUT behaves as
expected, it passes the test, else it fails the test. The running of
the tests themselves can be automated by software in the form
of test scripts which can be reused several times if developed
correctly [2]. It is the generation of input data that makes up the
test cases, which seems to require human input and resources.
It is the generation of such test case data that is of interest in
this paper and will be explained in the sections to follow.

The rest of the paper is structured as follows: Sections I-B,
I-C introduce some software testing paradigms and Section
I-D introduces the two evolutionary paradigms that comprise
the proposed hybrid. While section II presents some previous
work in the field, section III describes how these paradigms
are used to create the recursive hybrid evolutionary algorithm
and results are presented in Section IV with some discussion
in Section V.

B. Software Testing Methodology Overview

Software testing can be broadly categorized into static and
dynamic testing, explained in the following subsections.

1) Static Software Testing: Under the static testing
paradigm, code reviewer(s) perform code reviews and walk-
throughs of the SUT with hypothetical inputs, visually follow-
ing the logical program flow. This is highly dependent on the
skill of the reviewer and requires a lot of the reviewer’s time
[3, 4].

Further improvements in static testing allowed code to be
symbolically analyzed, collecting predicates for the various
paths of execution of the code. From these predicates, it is
determined which paths may be infeasible or non-executable
[5]. Others have used such an approach and combined these
predicates with a constraint solver to determine which paths
may be infeasible in a SUT [6].

2) Dynamic Software Testing: On the other hand, under the
dynamic testing paradigm, the code for the SUT is actually run
with the given test inputs. The behavior of the SUT is observed
and compared against its expected behavior and the test passes

or fails depending on whether the observed behavior matches
the expected behavior.

As outlined in [7], dynamic testing can be split into two
categories:

1) Black box testing: also known as functional testing;
tests the SUT to ensure that it is faithful to the specifi-
cations from which it was authored

2) White box testing: also known as structural testing;
tests the SUT to attain some level of code coverage
and to test it on boundary conditions, etc.

C. Dynamic White Box Testing

White box testing is a software testing paradigm that uses
the source code of the SUT to test it. It is used to ensure
that all parts of the code’s structure are executable, i.e. to
ensure code coverage. As such, there are several forms of
white-box testing. In each form, the SUT is converted into
a control flow graph (CFG) - a mathematical representation
of the logical program flow of the SUT. In a CFG, each
statement is a node and sequential statements are connected
by edges. Branching statements (if-then-else statements,
for-loops and while-loops) are characterized by mul-
tiple edges emanating from a single node, with conditions on
each edge.

The core principle around dynamic, white-box testing is that
some code coverage criteria must be met. Given a CFG of the
SUT, there are many notions of coverage (node coverage, edge
coverage, etc). Among these coverage criteria, path coverage
is the strongest testing criterion [3], and it is widely accepted
as a natural criterion of program testing completeness [5]. It
requires that every path in the CFG (from the source node to
any terminal node) be executed at least once by the test suite.

D. Evolutionary Algorithms

1) Genetic Algorithms: As outlined by Juang [8], a GA
(Genetic Algorithm) encodes a candidate solution to a problem
in “individuals” (or “chromosomes”) of a “population”. After
initializing a random population of individuals, the latter are
evaluated for fitness (a measure determining the optimality
of the candidate solution in its ability to solve the prob-
lem). Members of the current generation of the population
are selected in a manner proportional to their fitness, to
undergo crossover and mutation operations so that parts of
these individuals may be combined with each other in the
hopes of creating a better individual for the next generation.
Through several iterations of such selection, crossover, and
mutation operations, the next generation of the population is
created. Several iterations of creating such next generations
are performed, in the hopes of eventually finding an individual
with an acceptable fitness value.

The various components of a GA are explained in the
following subsections:

Chromosome: A chromosome is an encoding of a candi-
date solution to the given problem. In the context of discover-
ing useful test input data, a chromosome may encode an input
vector (i.e. a vector of values - one per input variable in the
SUT) [9].

Individual: An individual is a full representation of a
candidate solution to the problem. Therefore an individual may
be a single chromosome or a collection of chromosomes. Since
the individuals in the GA used in this paper have only one
chromosome, the terms “chromosome” and “individual” are
used interchangeably.

Population Generation: In order to begin the process of
evolution, the first generation of the population needs to be
synthesized to cover the search space as evenly as possible, so
that the subsequent genetic operations (crossover and mutation
operations) do not get stuck in local optima. This promotes
genetic diversity so that some mating operations would allow
the GA to escape local optima. This is achieved by creating a
random initial population. Thus, for a population of bit-string
chromosomes, n bits long, each chromosome is generated by
concatenating the results of n calls to a random bit generator
[9].

Fitness: In order for a GA to evolve better individuals
over time, the measure of the quality of each individual is
provided by an objective fitness function. Since each individual
encodes an input vector for the SUT, the fitness function
captures differences between the individual-induced path and
the target path, as explained in Section III-D.

Selection: In order to produce better individuals for the
next generation of the population, appropriate individuals must
be selected from the current population. Intuitively, a selection
mechanism would favor fitter individuals over unfit ones. To
that end, a biased roulette wheel selection mechanism is used.

A biased roulette wheel selection models a situation where
individuals bet on a roulette wheel, and the winner will
be chosen for genetic (crossover and mutation) operations
[10, 11]. In order to bias the bets that the individuals place,
based on their fitnesses, each individual is to bet on an entire
section of the roulette wheel. The size of the section is directly
proportional to the fitness of the individual, relative to the
population [5]. For example, if a population consists of three
individuals whose fitness scores are as shown in Table I

Table I: Fitnesses of the Individuals in a Population

Individual Raw Fitness Relative Fitness 1

1 5 0.5

2 1 0.1

3 4 0.4

And the biased roulette wheel was modeled as the continu-
ous interval [0, 1], then, the individuals are allowed to bet on
sections of the roulette wheel as shown in Table II

Table II: A Biased Roulette Wheel

Individual Section of the Roulette Wheel

1 0.0 - 0.5

2 0.5 - 0.6

3 0.6 - 1.0

1Relative fitness is computed as
fitness(p)∑

p∈population fitness(p)

A selection operation is performed by picking a random
number in the interval and selecting the individual within
whose block that number falls. Thus if the random number was
0.506934, then individual 2 is selected for mating operations.

Crossover: In order to combine components of known
candidate solutions to form new candidate solutions, a process
called crossover is employed. In the process of crossover,
parts of corresponding pairs of chromosomes from two parent
individuals are recombined to form the chromosomes of the
child individual. To that end, a one-point crossover mechanism
(discussed below) was used.

One point crossover generates a child chromosome by con-
catenating complement segments of the parent chromosomes.
The point of segmentation (called the crossover point) is
selected at random. An example crossover is illustrated in
Figure 1.

p1 A1 B1 C1 D1

p2 A2 B2 C2 D2

One possible child chromosome would be (if the crossover
point were between the third and fourth gene)

Child A1 B1 C1 D2

Figure 1: An Example Crossover

Mutation: Mutation is a process by which a chromosome
is altered slightly in order to create a variant of itself. This
is done in order to allow the GA to escape local optima by
allowing the chromosome (and hence the individual) to move
to a different point in the solution space. One possible mutation
on a binary bit-string chromosome would flip the value of a
random bit, as illustrated in Figure 2.

Before Mutation 0 1 0 0

After Mutation 0 1 0 1

Figure 2: An Example Mutation

2) Evolutionary Strategy: An Evolutionary Strategy (ES)
is an evolutionary algorithm similar to a GA. The main
difference is that ESs do not use crossover operators. Instead,
once the initial random population has been generated, they
progress from one generation to the next by selecting the fittest
individual of that generation and mutating it several times in
random ways in order to form the individuals of the next
generation of that population.

II. PREVIOUS WORK

There are two competing schools of thought in using evo-
lutionary algorithms for dynamic white-box testing:

1) Given all target paths through the CFG of the SUT, run
one instance of a GA to learn the inputs for each such
path [12]. This will be referred to as OFE (One for
Each).

2) Given all target paths through the CFG of the SUT, run
one instance of a GA to collectively learn the inputs
for all target paths [5, 13, 3].This will be referred to as
OFA (One for All).

Note the following definitions of target path and induced path:

1) Target path: a path in the CFG of the SUT from
the start node to any terminal node that needs to be
executed by some vector of inputs in the test suite.

2) Induced path: the path in the CFG of the SUT that is
observed to have been executed by running the SUT on
a vector of input test data.

OFE is inefficient as it encourages redundant learning among
two GA instances that have to learn inputs in a small neigh-
borhood of the search space, owing to similar induced paths
in the CFG.
On the other hand, OFA is also inefficient. Consider a set
of target paths in which most target paths are very similar
to each other, but one target path is very dissimilar. In such a
scenario, the GA used in OFA would likely converge to the part
of the search space containing inputs that induce the similar
target paths. It would then have to diverge in the search space
and converge again onto a different part of the search space
that contains inputs to induce the dissimilar target path. This
required diverging can be viewed as “unlearning” or “evolving
backwards”, which is redundant and therefore inefficient.

III. METHODOLOGY

As discussed in section II, using one run of a GA per
collection of target paths in order to discover test input data for
a SUT is inefficient. At the same time, executing one run of
the GA per target path seems inefficient. Therefore, a balance
needs to be struck with a hybrid system. Such a hybrid system
is presented in this paper.

In the spirit of the work presented in [14] this paper will
generate groupings of target paths. However, a run of the
GA for each group will not start with a normal random
population generation function. Rather, the initial population
will be primed in some sense to reflect the context of the
grouping of similar target paths. This is somewhat visualized
in Figures 3 and 4.

1) The CFG was generated from the SUT by a human
agent as an appropriate software library was unavailable
for the used implementation.

2) As a preprocessing step to the evolutionary algorithm to
follow, the similarity between every pair of target paths
extracted from the CFG is computed, using the relative
similarity measure shown in eq. (1), derived from the
similarity measure described in [14].

3) A random population of test input data is generated
with a meaningful chromosomal structure. This chro-
mosomal structure is described in more detail in Section
III-B.

4) The target paths are binned into groups based on target
paths whose relative similarities are greater than an
experimentally determined threshold.

5) The chromosome in the population that has the highest
fitness among each group is then considered to be the

seed for the next generation of test input data for that
group of target paths.

6) This chromosome is mutated several times in various
ways to form the new population for the group of
similar target paths.

7) Recursively repeat steps 4 - 6 until the resulting groups
of similar target paths are all singletons.

8) Execute a run of the GA per target path (i.e. per
singleton group of target paths) until a test input is
discovered that induces the target path.

9) Record the discovered test input and the target path and
terminate the evolutionary process for that group.

Figure 3: Overview of the Recursive Hybrid Evolutionary
Algorithm

Figure 4: Overview of the Seeded Genetic Algorithm

Despite the drawbacks to executing separate runs of the
evolutionary process per group or target paths, the following
justifications can be made:

1) This method is highly parallelizable as each run of the
evolutionary process per group or target paths in one
level of recursion is independent of other similar runs
in the same level of recursion.

2) Due to the small size of each group, the evolutionary
process to execute a run of the GA would not take as
long.

3) Since the initial population for the GA has already
undergone several generations evolution, the initial
population is already comprised of multiple very fit

chromosomes2. This would only expedite the process
of evolution.

4) Since the GAs themselves can be executed fairly
quickly (as explained above), the maximum tardiness
of the last machine to finish such a run of the GA in a
parallel environment can be reduced.

A. The Benchmark Problems

To benchmark this algorithm against other algorithms, the
well known triangle classification program, the bubble-sort
program and the min-max algorithm (presented in [3])were
used as the SUTs. The python implementation of these pro-
grams are presented in Algorithms 1, 2 and 3. All target paths
for Algorithm 1 are listed in Table III and all target paths for
Algorithm 3 are listed in Table . Algorithm 2 has a total of 64
target paths, which are not listed here due to the sheer number
of entries.

Algorithm 1 The Triangle Classification Program (SUT)

1 def c l a s s i f y (x , y , z) :
2 " " "
3 Re tu r n codes :
4 −1: n o t a t r i a n g l e
5 0: e q u i l l a t e r a l
6 1: i s o s c e l e s
7 2: s c a l e n e
8 " " "
9

10 i f x<y+z and y<z+x and z<x+y :
11 i f x != y and y != z and z != x :
12 re turn 2
13 e l s e :
14 i f x==y==z :
15 re turn 0
16 e l s e :
17 re turn 1
18 e l s e :
19 re turn −1

The CFGs of these two SUTs are shown in Figures 5 and
6.

10

11

19

12

14

15

17

Figure 5: CFG for Triangle Classification Program

These programs have been used as benchmarking SUTs
in [3, 7], making them ideal candidates to benchmark the

2These chromosomes are at least much more fit than the chromosomes in
the initial, randomly generated population

Algorithm 2 The Bubble Sort Program (SUT)

1 def b u b b l e S o r t (x , y , z) :
2 " " "
3 S t o r e t h e i n p u t s i n a l i s t .
4 S o r t t h e l i s t IN−PLACE by
5 t h e we l l−known bub b l e s o r t .
6 1 . For each e l e m e n t
7 2 . For each each a d j a c e n t p a i r
8 3 . I f t h e l e f t e l e m e n t
9 i s l a r g e r than t h e r i g h t

10 4 . Swap t h e two e l e m e n t s
11 5 . Re t u r n t h e s o r t e d l i s t
12 " " "
13
14 L = [x , y , z]
15 f o r _ in x ra ng e (l e n (L)) :
16 f o r i in x ra ng e (l e n (L) −1) :
17 i f L [i] > L [i + 1] :
18 L [i] , L [i +1]=L [i +1] ,L [i]
19 re turn L

Algorithm 3 The Min-Max Program (SUT)

1 def minimax (a , b , c) :
2 i f a>b :
3 i f a>c :
4 M = a
5 i f b>c :
6 m = c
7 e l s e :
8 m = b
9 e l s e :

10 M = c
11 m = b
12 e l s e :
13 i f b>c :
14 M = b
15 i f a>c :
16 m = c
17 e l s e :
18 m = a
19 e l s e :
20 M = c
21 m = a
22 re turn M,m

hybrid algorithm presented in this paper. It is also important to
note that the proposed algorithm is intended to discover input
vectors for large test suites. As a result, its advantages will be
better showcased with a SUT with a greater number of target
paths. This is one of the reasons why Algorithm 2 was chosen
as a benchmark.

B. The Chromosome Structure

Each individual for the evolutionary algorithm presented in
this paper encodes a vector of inputs for the benchmarking

14 15 16
19

17

18

Figure 6: CFG for The Bubble Sort Program

2

3

13

4

10

5

6

8

22

11

14

20

15

18

16

21

Figure 7: CFG for The Min-Max Program

program used as the SUT. In the style of [7], we restrict the
range of the inputs to the inclusive interval [1, 10]. The input
vector is represented as a 12-bit binary string; a maximum
of 4 bits per input parameter is required, in order to be
represented as a binary string. Thus, an individual chromosome
is comprised of 12 bits, across three 4-bit segments, each of
which encodes the value of a particular input. An example of
this is shown in Figure 8, by way of a chromosome encoding
the input vector <3,4,5> as inputs to the either of the
benchmark problems used.

C. Generating the Initial Population

The initial population is generated by creating 1000 unique
chromosomes. Each chromosome is generated by three calls to
a library function that returns a random integer in the inclusive

Table III: All Target Paths for Algorithm 1

Target Path

(22,31)

(22,23,24)

(22,23,26,27)

(22,23,26,29)

Table IV: All Target Paths for Algorithm 3

Target Path

(2,3,4,7,6,22)

(2,3,4,7,8,22)

(2,3,10,11,22)

(2,13,14,17,16,22)

(2,13,14,17,20,22)

(2,13,20,21,22)

0 0 1 1 0 1 0 0 0 1 0 1

3 4 5

Figure 8: A Chromosome Encoding the Input Vector
<3,4,5>

interval [1, 10]. These integers are then converted into 4-bit
binary strings (padded with 0s on the left as required) and
concatenated to form a single chromosome.

D. Evaluating the Fitness of an Individual

The fitness of an individual is evaluated as follows:

1) The individual’s encoding of the three parameters is
decoded into three integers

2) The SUT is run on these integers as parameters
3) The lines of code that are executed by the SUT called

on these parameters3 are recorded4

4) The induced path is compared to the target path, and a
similarity measure is computed5

5) The fitness of an individual is directly proportional to
how similar it is to the target path (as indicated by the
similarity measure)

1) Fitness Evaluation for the ES: For the Evolutionary
Strategy side of the hybrid algorithm, the fitness of an in-
dividual is computed against a bucket of target paths. This is
accomplished as follows:

1) Given an individual i, compute the average relative
similarity6 of the path induced by i against every target
path in the bucket

2) The individual with the highest average relative simi-
larity is considered to be the fittest individual for that
bucket of target paths

The relative similarity measure is preferred over the non-
relative similarity measure, as the relative measure indicates a
normalized score. This facilitates comparisons between paths
of unequal lengths without skewing the comparison.

2) Fitness Evaluation for the GA: For the Genetic Algorithm
side of the hybrid algorithm, the fitness of an individual is
computed against a single target path. This is accomplished as
follows:

1) Given an individual i, compute the similarity7 of the
path induced by i against the target path

2) The individual with the highest such similarity is con-
sidered to be the fittest individual

3) Computing Similarity between Paths: Given two paths
p1 and p2, the similarity between these paths is computed by
the following expression:

3This is also known as the path induced by the input parameters
4This is done with the use of the trace module provided in the python

programming language’s standard library
5Two different comparisons are used - one for the ES and one for the GA.

These are explained in further sections in more detail
6shown in equation (2)
7shown in equation (1)

s(pi, pj) =
k − 1

max(|pi|, |pj |)
(1)

where 1 ≤ k ≤ max(|pi|, |pj |) is maximal
and for all a ≤ i ≤ k, the ith node in pi is exactly the ith
node of pj (for some 1 ≤ a ≤ max(|pi|, |pj |)). In effect, this
measure views both paths as strings, in which each node in
the path is considered to be an atomic character. Under that
view, k is the length of the largest common substring.

Further, we define a relative similarity

sR(pi, pj) =
s(pi, pj)

∑|PATHS|
k=0

s(pi, pk) + s(pj , pk)
(2)

For example, if pi is (22,23,24) and pj is (22,23,26,27),
s(pi, pj) = 0.25, since the perceived longest common sub-
string is (22, 23), implying k = 2.

E. Crossover

A one-point crossover is used, as described in section I-D1.
Figure 9 shows the result of such a crossover with the two
listed parents and a crossover point of 8 (as indicated by a
blank column).

P1 1 0 0 1 1 0 1 0 1 0 1 1

P2 0 0 1 1 0 1 0 1 1 0 1 0

C1 0 0 1 1 0 1 0 1 1 0 1 1

C2 1 0 0 1 1 0 1 0 1 0 1 0

Figure 9: Example One-Point Crossover

F. Mutation

A mutation is defined for this framework as a single-point
mutation (as described in section I-D1). This ensures that one
of the bits in the encoding of one of the input parameters is
flipped.

G. Algorithmic Parameters

Table V: Parameters for an evolutionary algorithm, run on
Algorithm 1

Parameter Description Value

popSize Number of individuals in the

population

50

initThreshold Minimum similarity between

two paths to be classified in

the same bin for the first

round of classification

0.1

threshold Minimum similarity between

two paths to be classified in

the same bin for all subse-

quent rounds of classification

0.7

spawnMutProb Probability of flipping a sin-

gle bit in a chromosome when

spawning a population from a

seed

0.1

crossProb Probability of crossover in the

GA

0.9

mutProb Probability of mutation in the

GA

0.05

Table VI: Parameters for an evolutionary algorithm, run on
Algorithm 2

Parameter Description Value

popSize Number of individuals in the

population

1000

initThreshold Minimum similarity between

two paths to be classified in

the same bin for the first

round of classification

0.1

threshold Minimum similarity between

two paths to be classified in

the same bin for all subse-

quent rounds of classification

0.8

spawnMutProb Probability of flipping a sin-

gle bit in a chromosome when

spawning a population from a

seed

0.3

GASpawnMutProb Probability of flipping a sin-

gle bit in a chromosome when

spawning a population from a

seed for the GA

0.15

crossProb Probability of crossover in the

GA

0.9

mutProb Probability of mutation in the

GA

0.05

IV. RESULTS

An algorithm that implemented the second paradigm dis-
cussed in Section II was implemented (with the same op-
timizations as the algorithm presented in this paper) and
run, tasked to generate inputs for Algorithms 1 and 2. In
addition the recursive hybrid algorithm proposed in this paper
was also made to do the same. The total number of fitness
evaluations performed by each of these methodologies was
recorded along with their relative run times. Ultimately, neither
of the algorithms were able to generate all target paths for the
bubbleSort program (within the constraints of the given time
and computational hardware), but the algorithm proposed in
this paper did discover at least as many paths as the other
and in a shorter amount of time. The total number of fitness
evaluations performed by each algorithm is shown in Table
VII, while Table VIII shows the total elapsed time taken by
each algorithm to complete execution and Table IX shows the
percentage of all target paths induced by the inputs discovered
by each algorithm (Tables X, XI and XII present discovered
paths).

It is important to note that Table VIII shows a very low run-
time for the OFE algorithm to discover all possible paths. This
is because it discovers each target path in under one generation
as the initial population contains inputs that induce the required
target path. Since the hybrid algorithm classifies the target
paths into bins before concluding that inputs for certain target
paths have been discovered, it is unable to perform such “short-
circuiting”. This is why the hybrid algorithm requires a much
higher run-time in this case.

Further, Table VIII shows that both the OFE algorithm and
the Hybrid algorithm require very close amounts of elapsed
time in order to complete their discovery of the required
target paths. This would appear to negate the superiority of
the Hybrid algorithm presented in this paper. However, note
that in the reported elapsed time, the OFE algorithm performs
8.7× 105 fitness evaluations, while the Hybrid algorithm per-

forms 2.91× 107 evaluations. Thus, while the OFE algorithm
performs approximately 300 fitness evaluations per second,
the Hybrid algorithm performs 11673 fitness evaluations per
second, thereby covering the search space more efficiently.

Table VII: Number of Fitness Evaluations

SUT OFE Hybrid

Triangle Classification 300 1900

Bubble Sort 8.7 × 10
5

2.91 × 10
7

Min-Max 5.0 × 10
6

1.5 × 10
6

Table VIII: Elapsed Run-Time

SUT OFE Hybrid

Triangle Classification 1 sec 9 sec

Bubble Sort 2903 sec 2493 sec

Min-Max 296 sec 137 sec

Table IX: Percentage of Target Paths Induced by the Test Suite

SUT OFE Hybrid

Triangle Classification 100% 100%

Bubble Sort 9.375% 9.375%

Min-Max 16.67% 66.67%

Table X: Paths discovered by both algorithms for Algorithm 2

Induced Target Paths in Algorithm 2

(14, 15, 16, 17, 18, 16, 17, 18, 16, 15, 16, 17, 18, 16, 17, 16, 15, 16, 17, 16, 17,

16, 15, 19)

(14, 15, 16, 17, 16, 17, 16, 15, 16, 17, 16, 17, 16, 15, 16, 17, 16, 17, 16, 15, 19)

(14, 15, 16, 17, 18, 16, 17, 18, 16, 15, 16, 17, 16, 17, 16, 15, 16, 17, 16, 17, 16,

15, 19)

(14, 15, 16, 17, 18, 16, 17, 16, 15, 16, 17, 16, 17, 16, 15, 16, 17, 16, 17, 16, 15,

19)

(14, 15, 16, 17, 16, 17, 18, 16, 15, 16, 17, 18, 16, 17, 16, 15, 16, 17, 16, 17, 16,

15, 19)

V. CONCLUSIONS

The preliminary data presented supports the conclusion that
the hybrid algorithm presented in this paper outperforms an
existing method in run-time. This is because it harnesses a
logarithmic decay in the computational cost of the fitness
function owing to the recursive classification of target paths
into sub-bins.

The data also supports that conclusion that this method is
better suited for testing SUTs with many paths, each of which
have many constraints on them.

Further, since the runs of the ESs and GAs at any given level
of bin classification are independent of each other, this method
is highly parallelizable. In addition, the binning allows for an
approximately logarithmic decay in the number of target paths
to be included in the fitness function. This implies that the
fitness values of individuals in a population is computed faster
as elapsed execution time progresses. This, however, is not the

Table XI: Paths discovered by the Hybrid Algorithm but not
OFE for Algorithm 2

Induced Target Paths in Algorithm 2

(14, 15, 16, 17, 16, 17, 18, 16, 15, 16, 17, 16, 17, 16, 15, 16, 17, 16, 17, 16, 15,

19)

Table XII: Paths discovered by the OFE but not the Hybrid
Algorithm for Algorithm 2

Induced Target Paths in Algorithm 2

(14, 15, 16, 17, 16, 17, 16, 15, 16, 17, 18, 16, 17, 18, 16, 15, 16, 17, 18, 16, 17,

16, 15, 19)

case for the other method, which maintains a constant-sized set
of target paths throughout execution. This is one reason why
the hybrid algorithm completed execution significantly faster,
despite having computed significantly more fitness values.

The bubble sort algorithm was used as a benchmarking SUT
to illustrate this. With 64 target paths, the existing method was
required to compare the path induced by each individual in
every generation of the population with 64 target paths. A pop-
ulation size of 1000 therefore drives 64000 path comparisons
per generation. However, with the hybrid, a GA is only invoked
on a single target path. Thus, even with 1000 individuals in the
population, only 1000 fitness evaluations are made. Further,
due to the threshold values, the logarithmic nature of the
decay of bin sizes forces the hybrid algorithm to perform
progressively fewer fitness evaluations on every successive
call to the ES on the target paths in a bin. Ultimately, the
algorithm presented in this paper discovers inputs that induce
a set of paths that contains at least all the paths induced by the
inputs discovered by the other method. These induced paths
are shown in Table X. It is of interest to note that fewer fitness
evaluations are performed by the hybrid algorithm on the Min-
Max SUT. This is not anomalous. Rather, it is an artifact
of the algorithm refusing to perform fitness evaluations after
an individual that induces the required target path has been
discovered. Thus, since the path coverage is much higher in
the case of the hybrid algorithm, there are more occassions
when it stops early, explaining the lower number of fitness
evaluations.

VI. FUTURE WORK

Further advancements of this work could include the devel-
opment of a similarity measure that does not require exper-
imental values for the threshold used to classify target paths
into bins. Such a measure would be on a standardized scale
that may require some prior knowledge about the target paths,
so that a threshold may be set without much experimentation.

REFERENCES

[1] B. Korel, “Automated Software Test Data Generation,”
IEEE TRANSACTIONS ON SOFTWARE ENGINEER-
ING, vol. 16, no. 8, pp. 870–879, 1990. [Online]. Avail-
able: http://www-public.it-sudparis.eu/~gibson/Teaching/
CSC7302/ReadingMaterial/Korel90.pdf

[2] E. Dustin, J. Rashka, and J. Paul, Automated software
testing: introduction, management, and performance.
Addison-Wesley Professional, 1999.

[3] M. a. Ahmed and I. Hermadi, “GA-based multiple
paths test data generator,” Computers & Operations
Research, vol. 35, no. 10, pp. 3107–3124, Oct.
2008. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S0305054807000251

[4] G. J. Myers, “The art of software testing, Publication
info.”

[5] M. Pei, E. D. Goodman, Z. Gao, and K. Zhong, “Au-
tomated software test data generation using a genetic
algorithm,” Michigan State University, Tech. Rep, no. 1,
pp. 1–15, 1994.

[6] C. S. Pasareanu, N. Rungta, and W. Visser,
“Symbolic execution with mixed concrete-symbolic
solving,” Proceedings of the 2011 International
Symposium on Software Testing and Analysis -
ISSTA ’11, p. 34, 2011. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=2001420.2001425

[7] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, A. Watkins,
and I. P. Management, “Breeding software test cases with
genetic algorithms,” in System Sciences, 2003. Proceed-
ings of the 36th Annual Hawaii International Conference
on. IEEE, 2003, pp. 10—-pp.

[8] C.-f. Juang, “A Hybrid of Genetic Algorithm and Particle
Swarm Optimization for Recurrent Network Design,”
vol. 34, no. 2, pp. 997–1006, 2004.

[9] J. Hunt, “Testing control software using a genetic al-
gorithm,” Engineering Applications of Artificial Intelli-
gence, vol. 8, no. 6, pp. 671–680, 1995.

[10] D. E. Goldberg and K. Deb, “A comparative
analysis of selection schemes used in
genetic algorithms,” Urbana, vol. 51, pp.
61 801–62 996, 1991. [Online]. Available: http:
//pdf.aminer.org/000/212/484/a_comparative_analysis_
of_selection_schemes_used_in_genetic_algorithms.pdf

[11] X. Yao, Evolutionary computation: theory and applica-
tions. World Scientific Publishing Company Incorpo-
rated, 1999.

[12] B. Jones, H.-H. Sthamer, and D. Eyres, “Automatic
structural testing using genetic algorithms,” Software
Engineering Journal, vol. 11, no. 5, p. 299,
1996. [Online]. Available: http://digital-library.theiet.
org/content/journals/10.1049/sej.1996.0040

[13] D. Gong, T. Tian, and X. Yao, “Grouping target paths for
evolutionary generation of test data in parallel,” Journal
of Systems and Software, 2012.

[14] D. Gong, W. Zhang, and X. Yao, “Evolutionary
generation of test data for many paths coverage
based on grouping,” Journal of Systems and
Software, vol. 84, no. 12, pp. 2222–2233, Dec.
2011. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S016412121100152X

